Designer atom arrays for quantum computing
نویسندگان
چکیده
منابع مشابه
Conductance in quantum wires by three quantum dots arrays
A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...
متن کاملConductance in quantum wires by three quantum dots arrays
A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...
متن کاملMaterial science for quantum computing with atom chips
In its most general form, the atom chip is a device in which neutral or charged particles are positioned in an isolating environment such as vacuum (or even a carbon solid state lattice) near the chip surface. The chip may then be used to interact in a highly controlled manner with the quantum state. I outline the importance of material science to quantum computing (QC) with atom chips, where t...
متن کاملconductance in quantum wires by three quantum dots arrays
a noninteracting quantum-dot arrays side coupled to a quantum wire is studied. transport through the quantum wire is investigated by using a noninteracting anderson tunneling hamiltonian. the conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. moreover, we have fo...
متن کاملMicrotrap arrays on magnetic film atom chips for quantum information science
We present two different strategies for developing a quantum information science platform, based on our experimental results with magnetic microtrap arrays on a magnetic-film atom chip. The first strategy aims for mesoscopic ensemble qubits in a lattice of ∼5μm period, so that qubits can be individually addressed and interactions can be mediated by Rydberg excitations. The second strategy aims ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2018
ISSN: 0028-0836,1476-4687
DOI: 10.1038/d41586-018-06107-8